
Sutton said, “that’s where the money is”. Working for a
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Introduction
Bootstrap methods are resampling techniques for as-
sessing uncertainty. They are useful when inference is
to be based on a complex procedure for which theoret-
ical results are unavailable or not useful for the sample
sizes met in practice, where a standard model is sus-
pect but it is unclear with what to replace it, or where
a ‘quick and dirty’ answer is required. They can also
be used to verify the usefulness of standard approxima-
tions for parametric models, and to improve them if they
seem to give inadequate inferences. This article, a brief
introduction on their use, is based closely on parts of
Davison and Hinkley (1997), where further details and
many examples and practicals can be found. A different
point of view is given by Efron and Tibshirani (1993)
and a more mathematical survey by Shao and Tu (1995),
while Hall (1992) describes the underlying theory.

Basic Ideas
The simplest setting is when the observed data
y1, . . . , yn are treated as a realisation of a random sam-
ple Y1, . . . , Yn from an unknown underlying distribu-
tion F . Interest is focused on a parameterθ, the out-
come of applying the statistical functionalt(·) to F , so
θ = t(F ). The simplest example of such a functional is
the average,t(F ) =

∫
y dF (y); in general we think of

t(·) as an algorithm to be applied toF .

The estimate ofθ is t = t(F̂ ), whereF̂ is an estimate of
F based on the datay1, . . . , yn. This might be a para-
metric model such as the normal, with parameters esti-
mated by maximum likelihood or a more robust method,

or the empirical distribution function (EDF)̂F , which
puts massn−1 on each of theyj . If partial information
is available aboutF , it may be injected intôF . How-
everF̂ is obtained, our estimatet is simply the result of
applying the algorithmt(·) to F̂ .

Typical issues now to be addressed are: what are bias
and variance estimates fort? What is a reliable con-
fidence interval forθ? Is a certain hypothesis consis-
tent with the data? Hypothesis tests raise the issue of
how the null hypothesis should be imposed, and are
discussed in detail in Chapter 4 of Davison and Hink-
ley (1997). Here we focus on confidence intervals,
which are reviewed in DiCiccio and Efron (1996), Davi-
son and Hinkley (1997, Chapter 5) and Carpenter and
Bithell (2000).

Confidence Intervals
The simplest approach to confidence interval construc-
tion uses normal approximation to the distribution ofT ,
the random variable of whicht is the observed value. If
the true bias and variance ofT are

b(F ) = E(T | F ) − θ = E(T | F ) − t(F ), (1)

v(F ) = var(T | F ),

then we might hope that in large samples

Z =
T − θ − b(F )

v(F )1/2

.∼ N(0, 1);

the conditioning in (1) indicates thatT is based on a
random sampleY1, . . . , Yn from F . In this case an ap-
proximate(1 − 2α) confidence interval forθ is

t−b(F )−z1−αv(F )1/2, t−b(F )−zαv(F )1/2, (2)

wherezα is theα quantile of the standard normal dis-
tribution. The adequacy of (2) depends onF , n, andT
and cannot be taken for granted.

As it stands (2) is useless, because it depends on the
unknownF . A key idea, sometimes called theboot-
strap or plug-in principle, is to replace the unknownF
with its known estimatêF , giving bias and variance es-
timatesb(F̂ ) andv(F̂ ). For all but the simplest esti-
matorsT these cannot be obtained analytically and so
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simulation is used. We generateR independent boot-
strap samplesY ∗

1 , . . . , Y ∗
n by sampling independently

from F̂ , compute the corresponding estimator random
variablesT ∗

1 , . . . , T ∗
R, and then hope that

b(F ) .= b(F̂ ) = E(T | F̂ ) − t(F̂ ) (3)

.= R−1
R∑

r=1

T ∗
r − t = T̄ ∗ − t, (4)

v(F ) .= v(F̂ ) = var(T | F̂ ) (5)

.=
1

R − 1

R∑
r=1

(T ∗
r − T̄ ∗)2. (6)

There are two errors here: statistical error due to re-
placement ofF by F̂ , and simulation error from re-
placement of expectation and variance by averages. Ev-
idently we must chooseR large enough to make the sec-
ond of these errors small relative to the first, and if pos-
sible useb(F̂ ) andv(F̂ ) in such a way that the statisti-
cal error, unavoidable in most situations, is minimized.
This means using approximate pivots where possible.

If the normal approximation leading to (2) fails because
the distribution ofT − θ is not close to normal, an alter-
native approach to setting confidence intervals may be
based onT −θ. The idea is that ifT ∗−t andT −θ have
roughly the same distribution, then quantiles of the sec-
ond may be estimated by simulating those of the first,
giving (1 − 2α) basic bootstrap confidence limits

t − (T ∗
((R+1)(1−α)) − t), t − (T ∗

((R+1)α) − t),

whereT ∗
(1) < · · · < T ∗

(R)are the sortedT ∗
r ’s. When an

approximate varianceV for T is available and can be
calculated fromY1, . . . , Yn, studentized bootstrap con-
fidence intervals may be based onZ = (T − θ)/V 1/2,
whose quantiles are estimated from simulated values
of the corresponding bootstrap quantityZ∗ = (T ∗ −
t)/V ∗1/2. This is justified by Edgeworth expansion
arguments valid for many but not all statistics (Hall,
1992).

Unlike the intervals mentioned above,percentile and
bias-corrected adjusted (BCa) intervals have the attrac-
tive property of invariance to transformations of the pa-
rameters. The percentile intervals with level(1− 2α) is
(T ∗

((R+1)α), T
∗
((R+1)(1−α))), while the BCa interval has

form (T ∗
((R+1)α′), T

∗
((R+1)(1−α′′))), with α′ andα′′ clev-

erly chosen to improve the properties of the interval.
DiCiccio and Efron (1996) describe the reasoning un-
derlying these intervals and their developments.

The BCa and studentized intervals are second-order ac-
curate. Numerical comparisons suggest that both tend
to undercover, so the true probability that a 0.95 inter-
val contains the true parameter is smaller than 0.95, and

that BCa intervals are shorter than studentized ones, so
they undercover by slightly more.

Bootstrapping in R

R (Ihaka and Gentleman, 1996) is a language and envi-
ronment for statistical computing and graphics. Addi-
tional details can be found atwww.r-project.org.
The two main packages for bootstrapping inR areboot
and bootstrap. Both are available on the ‘Com-
prehensiveR Archive Network’ (CRAN, cran.r-
project.org) and accompany Davison and Hinkley
(1997) and Efron and Tibshirani (1993) respectively.
The packageboot, written by Angelo Canty for use
within S-Plus, was ported toR by Brian Ripley and
is much more comprehensive than any of the current al-
ternatives, including methods that the others do not in-
clude. After downloading the package from CRAN and
installing the package, one simply has to type
require(boot)
at theR prompt. Note that the installation could also
performed withinR by means of
install.packages(boot) A good starting point
is to carefully read the documentations of theR func-
tionsboot andboot.ci
?boot
?boot.ci
and to try out one of the examples given in the ‘Ex-
amples’ section of the corresponding help file. In what
follows we illustrate their use.

Example

Figure 1shows data from an experiment in which two
laser treatments were randomized to eyes on patients.
The response is visual acuity, measured by the num-
ber of letters correctly identified in a standard eye test.
Some patients had only one suitable eye, and they re-
ceived one treatment allocated at random. There are 20
patients with paired data and 20 patients for whom just
one observation is available, so we have a mixture of
paired comparison and two-sample data.

blue <- c(4,69,87,35,39,79,31,79,65,95,68,
62,70,80,84,79,66,75,59,77,36,86,
39,85,74,72,69,85,85,72)

red <-c(62,80,82,83,0,81,28,69,48,90,63,
77,0,55,83,85,54,72,58,68,88,83,78,
30,58,45,78,64,87,65)

acui<-data.frame(str=c(rep(0,20),
rep(1,10)),red,blue)
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Figure 1:Paired (circles) and unpaired data (small blobs).

We denote the fully observed pairsyj = (rj , bj), the
responses for the eyes treated with red and blue treat-
ments, and for thesend patients we letdj = bj − rj .
Individuals with just one observation give datayj =
(?, bj) or yj = (rj , ?); there arenb andnr of these. The
unknown variances of thed’s, r’s andb’s areσ2

d, σ2
r and

σ2
b .

For illustration purposes, we will perform a standard
analysis for each. First, we could only consider the
paired data and construct the classical Student-t 0.95
confidence interval for the mean of the differences, of
form d̄ ± tn−1(0.025)sd/n

1/2
d , whered̄ = 3.25, sd is

the standard deviation of thed’s andtn−1(0.025) is the
quantile of the appropriatet distribution. This can be
done inR by means of

> acu.pd <- acui[acui$str==0,]
> dif <- acu.pd$blue-acu.pd$red
> n <- nrow(acu.pd)
>tmp<-qt(0.025,n-1)*sd(dif)/sqrt(n)
> c(mean(dif)+tmp, mean(dif)-tmp)
[1] -9.270335 15.770335

But a Q-Q plot of the differences looks more Cauchy
than normal, so the usual model might be thought unre-
liable. The bootstrap can help to check this. To perform
a nonparametric bootstrap in this case we first need to
define thebootstrap function, corresponding to the al-
gorithmt(·):
acu.pd.fun <- function(data, i){
d <- data[i,]
dif <- d$blue-d$red
c(mean(dif), var(dif)/nrow(d)) }

A set of R = 999 bootstrap replicates can
then be easily obtained withacu.pd.b<-
boot(acu.pd,acu.pd.fun,R=999) The result-

ing nonparametric 0.95 bootstrap confidence intervals
can be calculated as shown previously or using directly

> boot.ci(acu.pd.b,
type=c("norm","basic","stud"))

...
Normal Basic Studentized
(-8.20,14.95) (-8.10,15.05) (-8.66,15.77)

The normal Q–Q plot of theR = 999 replicates in the
left panel of Figure 2underlines the fact that the Student-
t and the bootstrap intervals are essentially equal.

An alternative is to consider only the two-sample data
and compare the means of the two populations issuing
from the patients for whom just one observation is avail-
able, namely

acu.ts<- acui[acui$str==1,]
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Figure 2:Normal Q–Q plots of bootstrap estimatet∗.
Left: for the paired analysis.

Right: for the two-sample analysis.

The classical normal 0.95 confidence interval for the
difference of the means is(b̄ − r̄) ± z0.025(s2

b/nb +
s2
r/nr)1/2, wheresb andsr are the standard deviations

of theb’s andr’s, andz0.025 is the 0.025 quantile of the
standard normal distribution.

>acu.ts <- acui[acui$str==1,]
>dif <- mean(acu.ts$blue)-mean(acu.ts$red)
>tmp <- qnorm(0.025)*

sqrt(var(acu.ts$blue)/nrow(acu.ts)+
var(acu.ts$red)/nrow(acu.ts))

> c(dif+tmp, dif-tmp)
[1] -13.76901 19.16901

The obvious estimator and its estimated variance are

t = b̄ − r̄, v = s2
b/nb + s2

r/nr,

whose values for these data are 2.7 and 70.6. To
construct bootstrap confidence intervals we generate

8 Statistical Computing & Statistical Graphics Newsletter Vol.13 No.1



R = 999 replicates oft and v, with each simulated
dataset containingnb values sampled with replacement
from the bs andnr values sampled with replacement
from thers. InR :

y<-c(acui$blue[21:30],acui$red[21:30])
acu<-data.frame(col=rep(c(1,2),c(10,10)),y)
acu.ts.f <- function(data, i){
d <- data[i,]
m <- mean(d$y[1:10])-mean(d$y[11:20])
v <- var(d$y[1:10])/10+var(d$y[11:20])/10
c(m, v) }
acu.ts.boot<-boot(acu,acu.ts.f,R=999,

strata=acu$col)

Herestrata=acu$col ensures stratified simulation.
The Q–Q plot of these 999 values in the right panel of
Figure 2 is close to normal, and the bootstrap intervals
computed usingboot.ci differ little from the classi-
cal normal interval.

We now combine the analyses, hoping that the resulting
confidence interval will be shorter. If the variancesσ2

d,
σ2

r andσ2
b of theds,rs andbs were known, a minimum

variance unbiased estimate of the difference between re-
sponses for blue and red treatments would be

ndd̄/σ2
d + (b̄ − r̄)/(σ2

b/nb + σ2
r/nr)

nd/σ2
d + 1/(σ2

b/nb + σ2
r/nr)

.

As σ2
d, σ2

r and σ2
b are unknown, we replace them by

estimates, giving estimated treatment difference and its
variance

t =
ndd̄/σ̂2

d + (b̄ − r̄)/(σ̂2
b/nb + σ̂2

r/nr)
nd/σ̂2

d + 1/(σ̂2
b/nb + σ̂2

r/nr)
,

v =
{
nd/σ̂2

d + 1/(σ̂2
b/nb + σ̂2

r/nr)
}−1

.

Here t = 3.07 and v = 4.8732, so a naive
0.95 confidence interval for the treatment difference is
(−6.48, 12.62).

One way to apply the bootstrap here is to generate a
bootstrap dataset by takingnd pairs randomly with re-
placement from̂Fy, nb values with replacement from̂Fb

andnr values with replacement from̂Fr, each resample
being taken with equal probability:

acu.f <- function(data, i){
d <- data[i,]
m <- sum(data$str)
if(length(unique((i)==(1:nrow(data))))!=1){
d$blue[d$str==1]<-sample(d$blue,size=m,T)
d$red[d$str==1]<-sample(d$red,size=m,T)}
dif<- d$blue[d$str==0]-d$red[d$str==0]
d2 <- d$blue[d$str==1]
d3 <- d$red[d$str==1]

v1 <- var(dif)/length(dif)
v2 <-var(d2)/length(d2)+var(d3)/length(d3)
v <- 1/(1/v1+1/v2)
c((mean(dif)/v1+(mean(d2)-mean(d3))/v2)*v,v)}
acu.b<-boot(acui,acu.f,R=999,strata=acui$str)
boot.ci(acu.b,type=c("norm","basic","stud",

"perc","bca"))

giving all five sets of confidence limits. The interested
reader can continue the analysis.

Regression
A linear regression model has formyj = xT

j β + εj ,
where the(yj , xj) are the response and thep× 1 vector
of covariates for thejth responseyj . We are usually in-
terested in confidence intervals for the parameters, the
choice of covariates, or prediction of the future response
y+ at a new covariatex+. The two basic resampling
schemes for regression models are

• resampling cases (y1, x1), . . . , (yn, xn), under
which the bootstrap data are

(y1, x1)∗, . . . , (yn, xn)∗,

taken independently with equal probabilitiesn−1

from the(yj , xj), and

• resampling residuals. Having obtained fitted val-
uesxT

j β̂, we takeε∗j randomly from centred stan-
dardized residualse1, . . . , en and set

y∗j = xT
j β̂ + ε∗j , j = 1, . . . , n.

Under case resampling the resampled design matrix
does not equal the original one. For moderately large
data sets this doesn’t matter, but it can be worth bear-
ing in mind if n is small or if a few observations have
a strong influence on some aspect of the design. If the
wrong model is fitted and this scheme is used we get an
appropriate measure of uncertainty, so case resampling
is in this sense robust. The second scheme is more effi-
cient than resampling pairs if the model is correct, but is
not robust to getting the wrong model, so careful model-
checking is needed before it can be used. Either scheme
can be stratified if the data are inhomogeneous. In the
most extreme form of stratification the strata consist of
just one residual; this is thewild bootstrap, used in non-
parametric regressions.

Variants of residual resampling needed for generalized
linear models, survival data and so forth are all con-
structed essentially by looking for the exchangeable as-
pects of the model, estimating them, and then resam-
pling them. Similar ideas also apply to time series mod-
els such as ARMA processes. Additional examples and
further details can be found in Davison and Hinkley
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(1997, Chapters 6–8). We now illustrate case and resid-
ual resampling.

The survival data (Efron, 1988) are survival per-
centages for rats at a succession of doses of radiation,
with two or three replicates at each dose; see Figure 3.
The data come with the packageboot and can be
loaded using
> data(survival)
To have a look at the data, simply typesurvival at
theR prompt. The theoretical relationship between sur-
vival rate (surv) and dose (dose) is exponential, so
linear regression applies to

x = dose, y = log(surv).

There is a clear outlier, case 13, atx = 1410.
The least squares estimate of slope is−59 × 10−4

using all the data, changing to−78 × 10−4 with
standard error5.4 × 10−4 when case 13 is omitted.
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Figure 3:Scatter plot ofsurvival data.
To illustrate the potential effect of an outlier in regres-
sion we resample cases, using

surv.fun <- function(data, i){
d <- data[i,]
d.reg <- lm(log(d$surv)˜d$dose)
c(coef(d.reg)) }

surv.boot<-boot(survival,surv.fun,R=999)

The effect of the outlier on the resampled estimates is
shown in Figure 4, a histogram of theR = 999 boot-
strap least squares slopesβ̂∗

1 . The two groups of boot-
strapped slopes correspond to resamples in which case
13 does not occur and to samples where it occurs once
or more. The resampling standard error ofβ̂∗

1 is 15.6 ×
10−4, but only7.8× 10−4 for samples without case 13.
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Figure 4: Histogram of bootstrap estimates of slopeβ̂∗
1

with superposed kernel density estimate.

A jackknife-after-bootstrap plot (Efron, 1992; Davison
and Hinkley, 1997, Section 3.10.1) shows the effect on
T ∗ − t of resampling from datasets from which each
of the observations has been removed. Here we expect
deletion of case 13 to have a strong effect, and Fig-
ure 5obtained through

> jack.after.boot(surv.boot, index=2)

shows clearly that this case has an appreciable effect
on the resampling distribution, and that its omission
would give much tighter confidence limits on the slope.
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Figure 5: Jackknife-after-bootstrap plot for the slope.
The vertical axis shows quantiles ofT ∗ − t for the full

sample (horizontal dotted lines) and without each
observation in turn, plotted against the influence value

for that observation.

The effect of this outlier on the intercept and slope
when resampling residuals can be assessed using
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sim=parametric in theboot call. The requiredR
code is:

fit <-lm(log(survival$surv)˜survival$dose)
res <- resid(fit)
f <- fitted(fit)
surv.r.mle<- data.frame(f,res)
surv.r.fun<-function(data)

coef(lm(log(data$surv)˜data$dose))
surv.r.sim <- function(data, mle){
data$surv<-exp(mle$f+sample(mle$res,T))

data }
surv.r.boot<- boot(survival,surv.r.fun,

R=999,sim="parametric",
ran.gen=surv.r.sim,mle=surv.r.mle)

Having understood what this code does, the interested
reader may use it to continue the analysis.

Discussion
Bootstrap resampling allows empirical assessment of
standard approximations, and may indicate ways to fix
them when they fail. The computer time involved is typ-
ically negligible — the resampling for this article took
far less than the time needed to examine the data, devise
plots and summary statistics, and to code (and check)
the simulations.

Bootstrap methods offer considerable potential for
modelling in complex problems, not least because they
enable the choice of estimator to be separated from the
assumptions under which its properties are to be as-
sessed. In principle the estimator chosen should be ap-
propriate to the model used, or there is a loss of effi-
ciency. In practice, however, there is often some doubt
about the exact error structure, and a well-chosen re-
sampling scheme can give inferences robust to precise
assumptions about the data.

Although the bootstrap is sometimes touted as a re-
placement for ‘traditional statistics’, we believe this to
be misguided. It is unwise to use a powerful tool with-
out understanding why it works, and the bootstrap rests
on ‘traditional’ ideas, even if their implementation via
simulation is not ‘traditional’. Populations, parameters,
samples, sampling variation, pivots and confidence lim-

its are fundamental statistical notions, and it does no-
one a service to brush them under the carpet. Indeed,
it is harmful to pretend that mere computation can re-
place thought about central issues such as the structure
of a problem, the type of answer required, the sampling
design and data quality. Moreover, as with any simula-
tion experiment, it is essential to monitor the output to
ensure that no unanticipated complications have arisen
and to check that the results make sense, and this en-
tails understanding how the output will be used. Never
forget: the aim of computing is insight, not numbers;
garbage in, garbage out.
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SOFTWARE PACKAGES

GGobi
Deborah F. Swayne, AT&T Labs – Research

dfs@research.att.com

GGobi is a new interactive and dynamic software sys-

tem for data visualization, the result of a significant re-
design of the older XGobi system (Swayne, Cook and
Buja, 1992; Swayne, Cook and Buja, 1998), whose de-
velopment spanned roughly the past decade. GGobi
differs from XGobi in many ways, and it is those dif-
ferences that explain best why we have undertaken this
redesign.

Vol.13 No.1 Statistical Computing & Statistical Graphics Newsletter 11


